기본 콘텐츠로 건너뛰기

socketcluster tutorial - 8. SocketCluster로 풀스택 발행/구독 (Full stack pub/sub with SocketCluster)

SocketCluster 풀스택 펍섭(발행/구독)


Socket.io 스타일의 emit/on 기능 외에도 SocketCluster를 사용하면 JavaScript(NodeJS 서버)를 사용하여 클라이언트 또는 서버의 실시간 pub/sub 채널과 상호 작용할 수 있습니다. 미들웨어 기능을 정의함으로써 SC는 실시간 데이터를 완벽하게 제어 할 수 있습니다. 미들웨어는 클라이언트가 특정 채널을 구독하고 게시하는 것을 차단하는 데 사용할 수 있지만 다른 클라이언트에 도달하기 전에 실시간 스트림을 백엔드로 변환하는데도 사용할 수 있습니다.

이 다이어그램은 SC v1.x.x의 아키텍처를 나타냅니다. SC v2.0.0+는 고정 로드 밸런서 계층(sticky load balancer layer)이 없습니다. 대신 워커는 동일한 포트를 공유하고 어느 포트가 가장 바쁜지를 기준으로 새로운 연결을 선택합니다. 다이어그램은 조금 일반적이지만 채널 1, 채널 2, 채널 3 ...은 고객이 참여할 수있는 다양한 대화방입니다. 각 방은 '수학', '물리학' , '화학'...과 같은 특정 ​​주제를에 집중할 수 있습니다, '물리학'방에 게시한 모든 메시지를 듣기 위해서는 클라이언트에서 다음과 같이 해야 합니다.
// SocketCluster API v1.0.0
var physChannel = socket.subscribe('physics');
physChannel.watch(function (data) {...});
물리학 방에 메시지를 전달하기 위해선 다음과 같이 호출합니다:
socket.publish('physics', messageData);
... 혹은
physChannel.publish(messageData);
여러 사용자가 채널을 공유 할 필요는 없습니다. 개별 사용자를 위해 채널을 설정할 수 있습니다. 예를 들어 사용자 이름이 'bob123'인 사용자는 'bob123'채널을 구독하고 시청할 수 있습니다. 그러면 bob123으로 데이터를 보내려는 다른 사용자는 다음과 같이 간단하게 호출할 수 있습니다:
socket.publish('bob123', {from: 'alice456', message: 'Hi Bob!'});
기본적으로 SC는 누구나 원하는 채널을 구독하고 게시할 수 있습니다. 서버에서 미들웨어를 지정하여 특정 사용자가 특정 이벤트를 구독, 게시 또는 전송하는 것을 허용 또는 차단할 수 있습니다. 예를 들면:
scServer.addMiddleware(scServer.MIDDLEWARE_SUBSCRIBE, function (req, next) {
  // ...
  if (...) {
    next(); // Allow
  } else {
    next(req.socket.id + ' is not allowed to subscribe to ' + req.channel); // Block
  }
});
scServer.addMiddleware(scServer.MIDDLEWARE_PUBLISH_IN, function (req, next) {
  // ...
  if (...) {
    next(); // Allow
  } else {
    next(req.socket.id + ' is not allowed to publish to the ' + req.channel + ' channel'); // Block
  }
});
scServer.addMiddleware(scServer.MIDDLEWARE_EMIT, function (req, next) {
  // ...
  if (...) {
    next(); // Allow
  } else {
    next(req.socket.id + ' is not allowed to emit the ' + req.event + ' req.event'); // Block
  }
});
또한 SocketCluster는 이벤트를 클라이언트에 발행할 수 있는 서버 측(scServer.exchange)의 Exchange 객체를 제공합니다:
scServer.exchange.publish(eventName, data, cb);
전송한 이벤트는 소켓의 반대편(즉, 서버 → 클라이언트 또는 클라이언트 → 서버)으로만 전송됩니다. 반면에 채널에 발행한 데이터는 구독중인 모든 클라이언트 소켓으로 전송됩니다 (다른쪽엔 아무 것도 보내지 않습니다!).

클라이언트 소켓을 채널을 구독하려면 다음과 같이 하면 됩니다.
var channelObject = socket.subscribe(channelName);
그러면 들어오는 채널 데이터를 처리하기 위해 아래와 같이 합니다.
channelObject.watch(handlerFn);
클라이언트가 채널 이벤트를 수신하려면 구독 요청이 SUBSCRIBE 미들웨어를 통과해야합니다.

이 블로그의 인기 게시물

Rinkeby Test Network에 접근하는 간단한 방법.

dApp 개발 시 실제 계정으로 트랜젝션을 보내면 너무나 비싸므로
Rinkeby나 Ropsten 같은 테스트 네트워크에 연결하여 마이닝 없이 faucet을 통해 ether를 받고
그걸로 트랜젝션 테스트를 하면 편리하다.

보통 https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor#create-your-%C3%90app 문서를 보고 시작하는데
geth --rpc --rpccorsdomain "http://localhost:3000" 이렇게 하면 마이닝부터 해야하니 귀찮다.
https://infura.io/#how-to 를 보고 계정을 신청하자. 이런 것도 호스팅이 되다니 좋은 세상이네.
간단한 개인 정보 몇가지를 입력하고 나면 Access Token이 나온다.

가입 후  https://infura.io/register.html 화면

Access Token이 있는 네트워크 주소로 geth를 연결한다.
geth --rpc --rpccorsdomain "https://rinkeby.infura.io/<YOUR_ACCESS_TOKEN>" 이러면 오케이.

meteor project를 만들고
meteor add ethereum:web3 추가한 다음 console에서
web3.eth.getBalance(web3.eth.coinbase, (error,result)=>console.log(
  error, result.toFormat()
)); 자신의 coinbase의 잔액을 구해보자.
6eth가 최소단위인 wei로 보면 6,000,000,000,000,000,000 정도.
https://faucet.rinkeby.io/ 여기에서 받아온 (무료로/마이닝없이) ether가 잘 나온다.
여기서부터 시작하는게 좋아보인다.

ESP32 DevBoard 개봉기

오늘 드디어 손에 넣었다. ESP32 DevBoard!
Adafruit 에서 15개 한정 재입고 트윗을 보고 광속 결제.
그리고 1주일의 기다림. 사랑해요 USPS <3
알리를 이용하다보니 1주일 정도는 광속 배송임.
물론 배송비도 무자비함 -_ㅜ
15개 한정판 adafruit 발 dev board
그놈이 틀림없으렸다.
오오 강려크한 포스
ESP32_Core_board_V2라고 적혀있군요.
ESP32 맞구요. 네네. ESP32-D0WDQ6 라고 써있는데 D → Dual-core 0 → No internal flash W → Wi-Fi D → Dual-mode Bluetooth Q → Quad Flat No-leads (QFN) package 6 → 6 mm × 6 mm package body size 라고 함.
길이는 이정도
모듈크기는 이정도
코어는 6mm밖에 안해! 여기에 전기만 넣으면 BLE+WIFI!
밑에 크고 발 8개 달린 놈은 FM25Q32라고 32Mbit 플래시메모리
ESP8266 DevBoard 동생이랑 비교 크고 아름다운 레귤레이터랑 CP2102 USB Driver가 붙어있음.
ESP8266 DevBoard엔 CH340G 인데 확 작아졌네.
머리를 맞대어 보았음.
모듈크기는 아주 약간 ESP32가 더 큰데 워낙에 핀이 많고 촘촘함. ESP8266인 ESP12는 핀 간격이 2.00mm인데 비해
ESP32는 1.27mm 밖에 안함.
딱봐도 비교가 될 정도.
https://www.sparkfun.com/news/2017 크고 아름다운 Pinouts

ESP8266 보드랑 별로 안달라보인다.
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx#mac
에서 CP2102 드라이버를 설치하고
screen 으로 연결해보자.
내 경우엔 tty.SLAB_USBtoUART 로 잡혔다.
어디서 기본 속도가 115200bps 라고 들은 적이 있어서
screen /dev/tty.SLAB_USBtoUART …

Mosca를 사용한 MQTT 연습

IoT에서 핵심 개념 중 사물간 통신 부분이 있는데 양방향 경량 통신 프로토콜로 MQTT라는 것이 있고 그것이 nodemcu 에 구현이 되어있어 흥미를 가지고 살펴보았다.

기본적으로 Meteor의 DDP 프로토콜처럼 pub/sub 구조인데 한번씩만 pub/sub을 하는 Meteor와는 다르게 구독(subscribe)은 지정 토픽에 대해 한번만 하고 발행(publish)은 그때그때 하는 구조였다.

기술적인 내용은 MQTT 같은 곳에 자세히 나와있으니 대충 읽고
실제적인 작동이 어떻게 되는지 직접 한번 경험해보고 싶었다.

물론 node.js와 javascript를 사랑하는 사람이기 때문에 npm 에서 찾았지만 이후의 내용은 어짜피 command line에서 작동하는 것이기 때문에 부담없이 해볼 수 있다.

먼저 MQTT Broker를 설치하자.


고양이 그림이 귀여운 Mosca 를 선택했다.
node.js 가 없으면 먼저 설치하고

npm install mosca bunyan -g

부터 시작해보자.
mosca 말고 bunyan이라는 것도 함께 설치하는데 JSON포멧의 로그를 볼때 편리하다.
덕분에 좋은 거 하나 배웠네.

여기서 Broker는 server랑은 조금 개념이 다른데 pub/sub을 하는 각각의 대상이 client/server의 관계가 아니기 때문이다. 서로서로 상호작용하는 관계이므로.
어쨌든 Broker가 없으면 sub과 pub을 서로 맺을 수가 없으니 반드시 하나는 구동해야한다.
http://www.slideshare.net/BryanBoyd/mqtt-austin-api 자세한 내용은 이런 슬라이드를 보면 활용예나 패턴에 대해 잘 나와있으니 참조하자.

mosca -v | bunyan

일단 이런 식으로 mosca 를 기동한다. mosquitto 같은 걸 써도 크게 다르지 않다. 어짜피 한번만 구동하면 끝이니까.

$ mosca -v | bunyan       +++.+++:   ,+++    +++;   '+++    +++.       ++.+++.++ …