기본 콘텐츠로 건너뛰기

socketcluster tutorial - 10. 복수 호스트 확장 (Scaling across multiple hosts)

복수 호스트 확장


SocketCluster를 사용하면 수직적(시스템/호스트의 여러 CPU 코어에 걸쳐)으로 수평적으로(여러 호스트에 걸쳐) 확장할 수 있습니다. 수평으로 확장하려면 SCC(권장)를 사용하거나 처음부터 직접 솔루션을 구현할 수 있습니다. SCC를 사용하는 경우 SC가 시스템에서 채널 데이터를 동기화하는 방법에 대한 구현 세부 정보를 배울 필요가 없습니다.

SCC

SCC는 2016 년 9 월에 도입되었습니다. SC는 여러 호스트에서 SC를 확장하기 위한 컴포넌트 모음입니다.

SCC는 설치가 쉬우며 뒤에서 일어나는 일에 대해 많이 알 필요 없이 수평적 확장성을 제공합니다. Kubernetes위에 SCC를 실행하면 위아래로 스케일 업이 자동으로 처리됩니다. SCC 사용에 대한 전체 안내서는 여기에 있습니다. SCC를 사용하는 경우 '수동으로 크기 조정'에 대한 아래 섹션을 읽을 필요가 없습니다.

수동으로 크기 조정

수평적 확장의 목표는 최적의 방법으로 트래픽을 모든 사용 가능한 시스템에 분산하는 것입니다. SocketCluster의 컨텍스트에서 수평 확장은 두 가지 특정 문제로 귀결됩니다.

  1. 들어오는 클라이언트 연결을 보낼 호스트를 어떻게 선택합니까?
  2. 한 클라이언트가 채널에 데이터를 게시할 때 다른 호스트의 해당 채널에 가입 한 다른 클라이언트가 채널 데이터를 실시간으로 수신하는지 어떻게 확인할 수 있습니까?
첫 번째 과제에 접근하는 데는 여러 가지 방법이 있습니다. 예를 들면 다음과 같습니다.

무작위로 호스트 URL을 선택하고 클라이언트 소켓의 connect() 메서드에 옵션으로 전달하여 각 클라이언트를 호스트 중 하나에 직접 보낼 수 있습니다.
로드 밸런서를 사용하여 들어오는 연결을 대상 호스트에 고르게 분산할 수 있습니다. 타사 서비스를 사용할 수도 있고 직접 설정할 수도 있습니다. SocketCuster v1.xx를 사용하는 경우 sticky로드 밸런서(예 : IP 주소 기반의 Sticky)를 사용해야 합니다. - 버전 v2.0.0 이상에서는 사용하지 않아도 됩니다. (이는 우리가 stateful HTTP 폴링 지원하지 않는 이유입니다). 사용하는 로드 밸런서는 WebSocket을 지원해야 합니다. HAProxy와 NGINX의 새로운 버전을 사용하세요. SC와 함께 작동하도록 설정하고 최적화하기 쉬운 것으로 LoadBalancer.js도 있습니다.

서로 다른 컴퓨터에 연결된 클라이언트가 동일한 pub/sub 채널을 공유할 수 있게 하려면 실시간으로 별도의 SocketCluster 인스턴스 (호스트) 간에 채널을 동기화하는 효율적인 방법이 필요합니다. 이를 위해 SocketCluster는 brokerController 파일 (broker.js)에 Broker 객체를 제공하여 이를 정확히 수행 할 수 있습니다. SocketCluster는 인스턴스 채널을 동기화할 수 있는 인터페이스만 제공합니다. 이 기술을 구현하기 위해 어떤 기술/구현을 사용하든 상관하지 않습니다. pub/sub를 지원하고 분산 클러스터로 실행할 수 있는 한 MQTT(예 : Mosquitto), AMQP (예 : RabbitMQ), ZeroMQ 및 Redis가 모두 가능한 옵션입니다. 이러한 서비스를 설정하는 방법에 대한 자세한 내용은 이 가이드의 범위를 벗어납니다. 이러한 기술/프로토콜 중 일부를 읽거나 서드파티 서비스를 사용해야 합니다.

여러 대의 머신으로 확장할 수 있는 작업/서브 클러스터가 있다고 가정하면 SC 인스턴스/머신 간의 실제 동기화는 매우 간단합니다 - SocketCluster의 브로커 프로세스를 통해 수행할 수 있습니다 - 자세한 정보는 Broker API의 이벤트 섹션을 읽으십시오. 결과적으로 MQ 서비스는 SocketCluster 인스턴스 간의 연결 고리처럼 작동합니다. 또한 외부 서비스가 SocketCluser 채널과 동일한 시스템의 일부인 것처럼 상호 작용할 수 있습니다.

분산 MQ 서비스를 실행한 후에는 원하는 클라이언트를 사용하여 브로커 프로세스와 메시지 대기열 서비스 간의 이벤트를 릴레이 하면 됩니다. 설정은 간단합니다.

  1. 브로커 인스턴스에서 'subscribe'이벤트가 발생하면 MQ 클라이언트에서 MQ 서비스의 해당 채널을 구독해야 합니다.
  2. 브로커가 '구독 취소'이벤트를 발생하면 MQ 서비스에서 해당 채널의 구독을 취소해야 합니다.
  3. MQ 클라이언트에서 일부 채널 데이터를 수신할 때마다 broker.publish(channelName, data)를 호출합니다.

'subscribe'및 'unsubscribe'이벤트는 개별 클라이언트 소켓에 대해 트리거 되지 않습니다. 이는 워커 프로세스에 의해 시작됩니다. 작업자는 언제 브로커에 구독/탈퇴해야 하는지 선택합니다. '구독'이벤트가 발생하면 현재 브로커가 해당 채널에 대한 책임이 있습니다. '탈퇴'이벤트는 이 브로커가 더 이상이 채널에 책임이 없음을 나타냅니다.

SC 인스턴스에는 각각 여러 브로커 프로세스가 있을 수 있습니다. 이 경우 각 브로커는 최종 클라이언트에서 사용하는 모든 채널의 하위 집합을 담당합니다. 어댑터를 작성할 때 모든 채널이 동일한 브로커를 통과한다고 절대 가정해서는 안됩니다.

마지막 고려 사항으로 대기 시간을 최소화하기 위해 SC 인스턴스 (또는 가능하면 동일한 데이터 센터 내부)와 가까운 곳에 MQ 서비스를 배포하는 것이 가장 좋습니다.

Videos by Nick Kotenberg

017 NodeJS Socketcluster Horizontal Scaling
018 NodeJS Socketcluster Horizontal Scaling with Loadbalancer

이 블로그의 인기 게시물

Rinkeby Test Network에 접근하는 간단한 방법.

dApp 개발 시 실제 계정으로 트랜젝션을 보내면 너무나 비싸므로
Rinkeby나 Ropsten 같은 테스트 네트워크에 연결하여 마이닝 없이 faucet을 통해 ether를 받고
그걸로 트랜젝션 테스트를 하면 편리하다.

보통 https://github.com/ethereum/wiki/wiki/Dapp-using-Meteor#create-your-%C3%90app 문서를 보고 시작하는데
geth --rpc --rpccorsdomain "http://localhost:3000" 이렇게 하면 마이닝부터 해야하니 귀찮다.
https://infura.io/#how-to 를 보고 계정을 신청하자. 이런 것도 호스팅이 되다니 좋은 세상이네.
간단한 개인 정보 몇가지를 입력하고 나면 Access Token이 나온다.

가입 후  https://infura.io/register.html 화면

Access Token이 있는 네트워크 주소로 geth를 연결한다.
geth --rpc --rpccorsdomain "https://rinkeby.infura.io/<YOUR_ACCESS_TOKEN>" 이러면 오케이.

meteor project를 만들고
meteor add ethereum:web3 추가한 다음 console에서
web3.eth.getBalance(web3.eth.coinbase, (error,result)=>console.log(
  error, result.toFormat()
)); 자신의 coinbase의 잔액을 구해보자.
6eth가 최소단위인 wei로 보면 6,000,000,000,000,000,000 정도.
https://faucet.rinkeby.io/ 여기에서 받아온 (무료로/마이닝없이) ether가 잘 나온다.
여기서부터 시작하는게 좋아보인다.

ESP32 DevBoard 개봉기

오늘 드디어 손에 넣었다. ESP32 DevBoard!
Adafruit 에서 15개 한정 재입고 트윗을 보고 광속 결제.
그리고 1주일의 기다림. 사랑해요 USPS <3
알리를 이용하다보니 1주일 정도는 광속 배송임.
물론 배송비도 무자비함 -_ㅜ
15개 한정판 adafruit 발 dev board
그놈이 틀림없으렸다.
오오 강려크한 포스
ESP32_Core_board_V2라고 적혀있군요.
ESP32 맞구요. 네네. ESP32-D0WDQ6 라고 써있는데 D → Dual-core 0 → No internal flash W → Wi-Fi D → Dual-mode Bluetooth Q → Quad Flat No-leads (QFN) package 6 → 6 mm × 6 mm package body size 라고 함.
길이는 이정도
모듈크기는 이정도
코어는 6mm밖에 안해! 여기에 전기만 넣으면 BLE+WIFI!
밑에 크고 발 8개 달린 놈은 FM25Q32라고 32Mbit 플래시메모리
ESP8266 DevBoard 동생이랑 비교 크고 아름다운 레귤레이터랑 CP2102 USB Driver가 붙어있음.
ESP8266 DevBoard엔 CH340G 인데 확 작아졌네.
머리를 맞대어 보았음.
모듈크기는 아주 약간 ESP32가 더 큰데 워낙에 핀이 많고 촘촘함. ESP8266인 ESP12는 핀 간격이 2.00mm인데 비해
ESP32는 1.27mm 밖에 안함.
딱봐도 비교가 될 정도.
https://www.sparkfun.com/news/2017 크고 아름다운 Pinouts

ESP8266 보드랑 별로 안달라보인다.
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx#mac
에서 CP2102 드라이버를 설치하고
screen 으로 연결해보자.
내 경우엔 tty.SLAB_USBtoUART 로 잡혔다.
어디서 기본 속도가 115200bps 라고 들은 적이 있어서
screen /dev/tty.SLAB_USBtoUART …

Mosca를 사용한 MQTT 연습

IoT에서 핵심 개념 중 사물간 통신 부분이 있는데 양방향 경량 통신 프로토콜로 MQTT라는 것이 있고 그것이 nodemcu 에 구현이 되어있어 흥미를 가지고 살펴보았다.

기본적으로 Meteor의 DDP 프로토콜처럼 pub/sub 구조인데 한번씩만 pub/sub을 하는 Meteor와는 다르게 구독(subscribe)은 지정 토픽에 대해 한번만 하고 발행(publish)은 그때그때 하는 구조였다.

기술적인 내용은 MQTT 같은 곳에 자세히 나와있으니 대충 읽고
실제적인 작동이 어떻게 되는지 직접 한번 경험해보고 싶었다.

물론 node.js와 javascript를 사랑하는 사람이기 때문에 npm 에서 찾았지만 이후의 내용은 어짜피 command line에서 작동하는 것이기 때문에 부담없이 해볼 수 있다.

먼저 MQTT Broker를 설치하자.


고양이 그림이 귀여운 Mosca 를 선택했다.
node.js 가 없으면 먼저 설치하고

npm install mosca bunyan -g

부터 시작해보자.
mosca 말고 bunyan이라는 것도 함께 설치하는데 JSON포멧의 로그를 볼때 편리하다.
덕분에 좋은 거 하나 배웠네.

여기서 Broker는 server랑은 조금 개념이 다른데 pub/sub을 하는 각각의 대상이 client/server의 관계가 아니기 때문이다. 서로서로 상호작용하는 관계이므로.
어쨌든 Broker가 없으면 sub과 pub을 서로 맺을 수가 없으니 반드시 하나는 구동해야한다.
http://www.slideshare.net/BryanBoyd/mqtt-austin-api 자세한 내용은 이런 슬라이드를 보면 활용예나 패턴에 대해 잘 나와있으니 참조하자.

mosca -v | bunyan

일단 이런 식으로 mosca 를 기동한다. mosquitto 같은 걸 써도 크게 다르지 않다. 어짜피 한번만 구동하면 끝이니까.

$ mosca -v | bunyan       +++.+++:   ,+++    +++;   '+++    +++.       ++.+++.++ …